Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

Page:  1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL

\

\_ (where _ is blank)

  • Ordinary whitespace to be used after a dot not denoting the end of a sentence
  • After commands without parameters use \~ (tilde) instead in order to avoid browser specific problems

\,

  • \, inserts the smallest predefined space in a formula
  • Equivalent: \hspace{2}
  • Ex.: $$a\,b$$ gives a\,b
  • Ex.: $$a~\hspace{2}~b$$ gives also a~\hspace{2}~b

\;

  • \; (backslash semicolon) inserts the third smallest predefined space in a formula
  • Equivalent: \hspace{6}
  • Ex.: $$a\;b$$ gives a\;b
  • Ex.: $$a~\hspace{6}~b$$ gives also a~\hspace{6}~b

\:

  • \: inserts the second smallest predefined space in a formula
  • Equivalent: \hspace{4}
  • Ex.: $$a\:b$$ gives a\:b
  • Ex.: $$a~\hspace{4}~b$$ gives also a~\hspace{4}~b

\/ (backslash slash)

  • \/ (backslash slash) avoids ligatures
  • Ex.: $$V\/A$$ gives V\/A in contrast to $$VA$$ which gives VA

\~

  • In order to prevent some browser specific problems with whitespaces, it is advisable to use ~ (tilde) as the whitespace instead of the normal blank key (in places where whitespaces are mandatory, e.g. after commands).
  • Ex.: $$\frac~xy$$ to produce \frac~xy
  • Ex.: $$\sqrt~n$$ to produce \sqrt~n

\hspace{n}

  • inserts a space of n pixels
  • Ex.: $$f(x)\hspace{6}=\hspace{6}0$$ gives f(x)\hspace{6}=\hspace{6}0
  • can be combined with the preceding command \unitlength{m}(default: m=1px) , which defines the applied unit
  • Ex.: $$\unitlength{20}a\hspace{2}b$$ gives \unitlength{20}a\hspace{2}b , i.e. a space of 20x2=40px

\LARGE (all capital letters)

  • Everthing following the \LARGE command will be output in the largest predefined font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\LARGE~3x$$ gives \LARGE~3x

\Large (L capital letter)

  • Everthing following the \Large command will be output in the second largest font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\Large~3x$$ gives \Large~3x

\large (all lower case letters)

  • Everthing following the \large command will be output in the large font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\large~3x$$ gives \large~3x

\normalsize

  • Everthing following the \normalsize command will be output in the smallest predefined font size until the system encounters another font size command.
  • \normalsize is the default font size, i.e. the size automatically chosen if there is no font size command
  • Ex.: $$\normalsize~3x$$ gives \normalsize~3x

\qquad

  • inserts a double space of current character set size
  • Ex.: $$a\qquad~b$$ gives a\qquad~b

\quad

  • inserts a space of current character set size
  • Ex.: $$a\quad~b$$ gives a\quad~b

\small

  • \small
  • Ex.: $$\small~3x$$ gives \small~3x

\tiny

  • Everthing following the \tiny command will be output in the smallest predefined font size until the system encounters another font size command.
  • Ex.: $$\tiny~3x$$ gives \tiny~3x

A

absolute font sizes (overview)

Absolute Font Sizes
CommandExampleResult
\tiny$$\tiny 3x$$\tiny 3x
\small$$\small 3x$$\small 3x
\normalsize (default)$$\normalsize 3x$$ or just $$3x$$\normalsize 3x
\large$$\large 3x$$\large 3x
\Large$$\Large 3x$$\Large 3x
\LARGE$$\LARGE 3x$$\LARGE 3x
   

\huge and \Huge are not supported by the mimeTeX filter

  


algebraic expression

using @@ x=y^2@@ to create x=y^{2}

alpha (lower case greek letter)

$$\alpha$$ gives \alpha

angle bracket

  • Syntax: \left<...\right>
  • Ex.: $$\left<f,g\right>$$ gives

\left


arithmetic operations

  • Type arithmetic operations and "=" as usual.
  • Exp.: $$f(x)=x-2b+(3a/c)$$ gives

f(x)=x-2b+(3a/c)

  • See also keyword "fraction" for extended capabilities.

array

  • Syntax for an n-dimensional array:
    \begin{array}a1&...&an\end{array}
  • Ex.: $$\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array}$$ gives

(\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array})


B

beta (lower case greek letter)

$$\beta$$ gives \beta

big sum

$$\bigsum_{n+2}^x$$   is   \bigsum_{n+2}^x


braces

  • Syntax: \left{...\right}
  • Ex.: $$M=\left{a, b, c\right}$$ gives

M=\left{a, b, c\right}


C

cdot (multiplication)

$$a\cdot~b$$ gives a\cdot~b

chi (lower case greek letter)

$$\chi$$ gives \chi

constants

  • Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
  • Following this convention, variables are shown in italic.
  • Exp.: $$f(x)=3a+x$$ gives

f(x)=3a+x


contour integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for the contour integral symbol:

$$\bigoint_{0}^{\infty}$$   gives  

\bigoint_{0}^{\infty}

and

$$\oint_{0}^{\infty}$$   gives 

\oint_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigoint_{\small0}^{\small\infty}$$   gives  

\LARGE\bigoint_{\small0}^{\small\infty}

and

$$\large\oint_{\small0}^{\small\infty}$$   gives 

\large\oint_{\small0}^{\small\infty}


coproduct

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Note: mimeTeX seems currently only to support the \bigcoprod command.
  • Syntax for coproduct symbol:

$$\bigcoprod_{i=k}^{n}$$   gives  

\bigcoprod_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigcoprod_{\small{i=k}}^{\small~n}$$   gives  

\LARGE\bigcoprod_{\small{i=k}}^{\small~n}


D

delimiters (overview)

Delimiters (parentheses, braces, brackets. ...)
CommandExampleResult

\left(... \right)

$$2\left(a+b\right)$$2~\left(a+b\right)
\left[... \right]$$\left[a^2+b^2~\right]$$\left[a^2+b^2~\right]
\left{... \right}$$\left{x^2, x^3, x^4,... \right}$$\left{x^2, x^3, x^4,... \right}
\left\langle... \right\rangle$$\left\langle a,b~\right\rangle$$\left\langle a,b~\right\rangle
\left| ... \right| $$\det\left|\array{a&b\\c&d}\right| $$\det\left|\array{a&b\\c&d}\right|
\left\| ... \right\| $$\left\|f~\right\|$$\left\|f~\right\|

\left{ ... \right<strong>.</strong></p><p><font color="#ff0000"><em>(note the dot!)</em></font></p></td><td valign="top" width="33%"><p>$$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$

(\rm switches to roman style)

f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.

\left.{ ... \right\}

(note the dot!)

$$\left.{{\rm~term1\atop\rm~term2}\right}=y$$\left.{{\rm~term1\atop \rm~term2}\right}=y

Note: The delimiters are automatically sizes.


delta

$$\delta$$ is \delta

Delta (upper case greek letter)

$$\Delta$$ gives \Delta

delta (lower case greek letter)

$$\delta$$ gives \delta

div (division)

$$x\div~y$$ gives x\div~y

division

@@1/2@@   is \frac{1}{2}

double vertical line (norm symbol)

  • Syntax: \left\|...\right\|
  • Exp.: $$\left\|af\right\| = \left|a\right|\left\|f\right\|$$ gives

\left\|af\right\| = \left|a\right|\left\|f\right\|


E

epsilon (lower case greek letter)

$$\epsilon$$ gives \epsilon

equals

@@x=2@@   is x=2

escaping the TeX filter

  • With two triple $'s embracing an expression you can make the filter to escape and the code itself is shown (with two embracing double $'s).
  • Ex.: $$$a^2$$$ produces $$a^2$$, i.e. prevents the filter to render it as a formula gif.

eta (lower case greek letter)

$$\eta$$ gives \eta

F

formula box

$$\fbox{x=\frac{1}{2}}$$  gives

\fbox{x=\frac{1}{2}}


fraction

  • Syntax: \frac{numerator}{denominator}
  • Use font sizing commands for specific sizing if you don't want the predefined one to be taken.
  • Ex. (with predefined sizing): $$f(x,y)=\frac{2a}{x+y}$$ gives

f(x,y)=\frac{2a}{x+y}

  • Ex. (with specific sizing): $$f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$$ gives

f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}

  • You may nest fractions as much as you want.
  • Ex. (nested fractions): $$\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$$ gives

\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}


G

gamma (lower case greek letter)

$$\gamma$$ gives \gamma

Gamma (upper case greek letter)

$$\Gamma$$ gives \Gamma

greater than

$$x>y$$  gives

x>y


greater than or equal

$$x\ge~y$$ or $$x\geq~y$$ gives

x\ge~y


greek letters (overview)

Simply write \greekletter for lower case and \Greekletter for upper case.

Here's a list of all known greek letters (Note: not all upper case greek letters are known):

Lower Case Greek Letters:

CommandFilter ExpressionResult
\alpha$$\alpha$$\alpha
\beta$$\beta$$\beta
\gamma$$\gamma$$\gamma
\delta$$\delta$$\delta
\epsilon$$\epsilon$$\epsilon
\varepsilon$$\varepsilon$$\varepsilon
\zeta$$\zeta$$\zeta
\eta$$\eta$$\eta
\theta$$\theta$$\theta
\vartheta$$\vartheta$$\vartheta
\iota$$\iota$$\iota
\kappa$$\kappa$$\kappa
\lambda$$\lambda$$\lambda
\mu$$\mu$$\mu
\nu$$\nu$$\nu
\xi$$\xi$$\xi
(!)$$o$$o
\pi$$\pi$$\pi
\varpi$$\varpi$$\varpi
\rho$$\rho$$\rho
\varrho$$\varrho$$\varrho
\sigma$$\sigma$$\sigma
\varsigma$$\varsima$$\varsigma
\tau$$\tau$$\tau
\upsilon$$\upsilon$$\upsilon
\phi$$\phi$$\phi
\varphi$$\varphi$$\varphi
\chi$$\chi$$\chi
\psi$$\psi$$\psi
\omega$$\omega$$\omega

Upper Case Greek Letters:

CommandFilter ExpressionResult
\Gamma$$\Gamma$$\Gamma
\Delta$$\Delta$$\Delta
\Theta$$\Theta$$\Theta
\Lambda$$\Lambda$$\Lambda
\Xi$$\Xi$$\Xi
\Pi$$\Pi$$\Pi
\Sigma$$\Sigma$$\Sigma
\Upsilon$$\Upsilon$$\Upsilon
\Phi$$\Phi$$\Phi
\Psi$$\Psi$$\Psi
\Omega$$\Omega$$\Omega


I

infinity

$$\infty$$  gives \infty


integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for integral symbol:

$$\bigint_{0}^{\infty}$$   gives  

\bigint_{0}^{\infty}

and

$$\int_{0}^{\infty}$$   gives 

\int_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigint_{\small0}^{\small\infty}$$   gives  

\LARGE\bigint_{\small0}^{\small\infty}

and

$$\large\int_{\small0}^{\small\infty}$$   gives 

\large\int_{\small0}^{\small\infty}


iota (lower case greek letter)

$$\iota$$ gives \iota

K

kappa

$$\kappa$$ gives \kappa

L

lambda (lower case greek letter)

$$\lambda$$ gives \lambda

Lambda (upper case greek letter)

$$\Lambda$$ gives \Lambda

Learning Formula

\frac{success}{problem}=~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}

left only brace

  • Syntax: \left{...\right.  <em><font color="#ff0000">(note the dot at the end!)</font></em></li><li><font color="#000000"><u>Ex.:</u> $$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$ gives

f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.

(\rm~something switches to roman style)


less than

$$<$$   gives


less than or equal

$$x\le~y$$ or $$x\leq~y$$ gives

x\le~y


M

math spaces

List of predefined spaces:

Math Spaces
CommandExampleResult
\, (smallest predefined)$$a\,b$$a\,b
\:  (second smallest predefined)$$a\:b$$a\:b
\;  (third smallest predefined)$$a\;b$$a\;b
\/  (avoiding ligatures)$$V\/A$$ instead of $$VA$$V\/A instead of VA
\quad  (space of current character set size)$$a\quad~b$$a\quad~b
\qquad  (double space of current character set size)$$a\qquad~b$$a\qquad~b
\_ (where _ is blank!)

$$a\ b$$

(whereas $$a\b$$ is not a valid filter expression since the blank space is missing; it is recommended to use the tilde ~ instead of the simple whitespace)

a\ b

\hspace{n} ,where n positive integer (= n Pixels)

$$a~\hspace{30}~b$$

$$a~\hspace{15}~b$$

$$a~\hspace{2}~b$$

$$a~\hspace{1}~b$$

a~\hspace{30}~b

a~\hspace{15}~b

a~\hspace{2}~b

a~\hspace{1}~b

\unitlength{m}\hspace{n}, changes the default unit length (m=1px) to be applied

$$a~\hspace{2}~b\unitlength{10}~\hspace{2}~c$$

(second space is 10x2=20px)

a~\hspace{2}~b\unitlength{10}~\hspace{2}~c

Note: Simple blank spaces and tildes (~) are ignored by the TeX filter and don't produce any space. You must use one of the defined math spaces to get a visible (extra) space.


mathematics expression

  • A valid expression inside the $'s is rendered as mathematics in an inserted gif image.
  • Ex.: $$x=y^2$$ creates 

x=y^2


matrix

  • An (m,n)-matrix is considered as an array of m*n elements, where the elements of a column are separated by "&" and the rows by "\\".
  • Syntax for an (m,n)-matrix:
    \begin{array}{<em>colformat}a11&...&a1n\\a21&...&a2n\\... \\am1&...&amn \end{array}

    where
    colformat defines the format of each of the n columns: l for left, r for right and c for center (hence {ccccc} defines for a (m,5)-matrix in which all columns are centered)

  • Ex.: $$\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)$$ gives

\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)

Note in the example above that "lcr" has the effect that column 1 is left aligned, column 2 centered and colums 3 right aligned.


minus

$$-$$ is -

minus plus

$$\mp~a$$ gives \mp~a

mu (lower case greek letter)

$$\mu$$ gives \mu

multiplication

$$x*y=z$$ is x*y=z

multiplication (with cdot)

$$a\cdot~b$$ gives a\cdot~b

N

not equal

$$x\neq~y$$ gives

x\neq~y

note: \neg produces the logical negation, i.e. $$\neg~A$$ gives

\neg~A


nu (lower case greek letter)

$$\nu$$ gives \nu

O

omega (lower case greek letter)

$$\omega$$ gives \omega

Omega (upper case greek letter)

$$\Omega$$ gives \Omega

omikron (lower case greek letter)

$$o$$ gives o

(note this exceptional syntax!)


P

parentheses

  • Syntax: \left(...\right) or ...
  • Ex.: $$2a\left(b+c\right)$$ gives

2a\left(b+c\right)


phi (lower case greek letter)

$$\phi$$ gives \phi

Phi (upper case greek letter)

$$\Phi$$ gives \Phi

pi

$$x=\pi r^2$$ is x=\pi r^2


pi (lower case greek letter)

$$\pi$$ gives \pi

Pi (upper case greek letter)

$$\Pi$$ gives \Pi

plus

$$+$$ is +

plus minus

$$a\pm~b$$ gives a\pm~b

product

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for product symbol:

$$\bigprod_{i=k}^{n}$$   gives  

\bigprod_{i=k}^{n}

and

$$\prod_{i=k}^{n}$$   gives 

\prod_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigprod_{\tiny{i=k}}^{\tiny{n}}$$   gives  

\LARGE\bigprod_{\tiny{i=k}}^{\tiny{n}} 

and

$$\large\prod_{\small{i=k}}^{\small{n}}$$   gives 

\large\prod_{\small{i=k}}^{\small{n}}


psi (lower case greek letter)

$$\psi$$ gives \psi

Psi (upper case greek letter)

$$\Psi$$ gives \Psi

R

relativity

E=mc^2

rho (lower case greek letter)

$$\rho$$ gives \rho

right only brace

  • Syntax: \left.{...\right}  (note the dot!)
  • Ex.: $$\left.{{\rm~term1\atop\rm~term2}\right}=y$$ gives

\left.{{\rm~term1\atop\rm~term2}\right}=y

(\rm~something switches to roman style)


root

  • Syntax: \sqrt[n]{arg} or simply  \sqrt{arg} for \sqrt[2]{arg}
  • Ex.: $$\sqrt[3]{8}$$ gives

\sqrt[3]{8}

  • Ex.: $$\sqrt{-1}$$ gives

\sqrt{-1}

  • Nesting of roots (and combining with fractions, ...etc.) are possible.
  • Ex.: $$\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$$ gives

\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}

  • Ex.: $$\sqrt[3]{-q+\sqrt{q^2+p^3}}$$ gives

\sqrt[3]{-q+\sqrt{q^2+p^3}}


S

s.u.m

$$\sum_{n+2}^x$$  is  \sum_{n+2}^x

sigma (lower case greek letter)

$$\sigma$$ gives \sigma

Sigma (upper case greek letter)

$$\Sigma$$ gives \Sigma

smiley

$$~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}$$  is ~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}

square bracket

  • Synatx: \left[...\right]
  • Ex.: $$\left[a,b\right]$$ gives \left[a,b\right]

square root

  • $$\sqrt{a}$$ or $$\sqrt~a$$ gives \sqrt~a
  • Use braces for terms with more than one character: $$\sqrt{x+y}$$ gives

\sqrt{x+y}


subscript

  • The command character "_" triggers subscription of the following expression(s).
  • For more than one subscripted character put them in braces {...}.
  • Use font sizing commands for appropriate sizing.
  • Ex.:$$x_1$$ gives

x_1

  • Ex.:$$a_{m+2n}$$ gives

a_{m+2n}

  • Ex. (with specific sizing):  $$x_{\small1}=a_{\small{m+2n}}$$ gives

x_{\small1}=a_{\small{m+2n}}

  • Combine subscripting with superscripting (command character "^").
    Syntax: Expr_{subExpr}^{supExpr}.
  • Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

A_{\small{i,j,k}}^{\small{-n+2}}


sum (summation)

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for summation symbol:

$$\bigsum_{i=k}^{n}$$   gives  

\bigsum_{i=k}^{n}

and

$$\sum_{i=k}^{n}$$   gives 

\sum_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigsum_{\small{i=1}}^{\small{n}}$$   gives  

\LARGE\bigsum_{\small{i=1}}^{\small{n}}

and

$$\large\sum_{\small{i=1}}^{\small{n}}$$   gives 

\large\sum_{\small{i=1}}^{\small{n}}


superscript

  • The command character "^" triggers superscription of the following expression(s).
  • For more than one superscripted character put them in braces {...}.
  • Use font sizing commands for appropriate sizing.
  • Ex.: $$x^2$$ gives

x^2

  • Ex.: $$a^{m+2n}$$ gives

a^{m+2n}

  • Ex. (with specific sizing): $$x^{\small2}=a^{\small{m+2n}}$$ gives

x^{\small2}=a^{\small{m+2n}}

  • Combine superscripting with subscripting (command character "_").
    Syntax: Expr_{subExpr}^{supExpr}.
  • Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

A_{\small{i,j,k}}^{\small{-n+2}}


T

tau (lower case greek letter)

$$\tau$$ gives \tau

TeX

TeX  notation allows for the expression of ASCII characters to generate formatted graphics output

theta (lower case greek letter)

$$\theta$$ gives \theta

Theta (upper case greek letter)

$$\Theta$$ gives \Theta

times

$$a\times~b$$ gives a\times~b

triangle

$$\triangle~abc$$ gives \triangle~abc

triggering the TeX filter

  • Two double $'s embracing a valid math expression trigger the filter to generate and insert the formula gif.
  • Ex.:  $$a^2$$ produces a^2

U

upsilon (lower case greek letter)

$$\upsilon$$ gives \upsilon

Upsilon (upper case greek letter)

$$\Upsilon$$ gives \Upsilon

V

varepsilon (special lower case greek letter)

$$\varepsilon$$ gives \varepsilon

variables

  • Variables in formulas are rendered in italic roman font face, which is a widely used convention.
  • Following this convention, constants are shown as non-italic.
  • Exp.: $$f(x)=3a+x$$ gives

f(x)=3a+x


varphi (special lower case greek letter)

$$\varphi$$ gives \varphi

varpi (special lower case greek letter)

$$\varpi$$ gives \varpi

varrho (special lower case greek letter)

$$\varrho$$ gives \varrho

varsigma (special lower greek letter)

$$\varsigma$$ gives \varsigma

vartheta (special lower case greek letter)

$$\vartheta$$ gives \vartheta

vertical line (absolute value, determinant, ...etc. symbol)

  • Syntax: \left|...\right|
  • Ex.: $$\left|b-a\right|$$ gives \left|b-a\right|
  • Ex.: $${\rm~det}\left|\begin{array}{cc}a&b\\c&d \end{array}\right|$$ gives  

{\rm~det}\left|\begin{array}{cc}a&b\\c&d \end{array}\right| 

 
("\rm~something" renders "something" in roman style)


X

xi (lower case greek letter)

$$\xi$$ gives \xi

Xi (upper case greek letter)

$$\Xi$$ gives \Xi

Z

zeta (lower case greek letter)

$$\zeta$$ gives \zeta


Page:  1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL