Math Notation Help


This glossary will help you build complex mathematical equations using the Tex markup language. This will involve using @@ or $$ before and after the expression to display the desired results.
Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

Page: (Previous)   1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL

A

array

  • Syntax for an n-dimensional array:
    \begin{array}a1&...&an\end{array}
  • Ex.: $$\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array}$ gives</li></ul><p align="center">(\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array})$$


B

beta (lower case greek letter)

$$\beta$ gives \beta$$

big sum

$$\bigsum_{n+2}^x$   is   \bigsum_{n+2}^x$$


braces

  • Syntax: \left{...\right}
  • Ex.: $$M=\left{a, b, c\right}$ gives </li></ul><p align="center">M=\left{a, b, c\right}$$


C

cdot (multiplication)

$$a\cdot~b$ gives a\cdot~b$$

chi (lower case greek letter)

$$\chi$ gives \chi$$

constants

  • Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
  • Following this convention, variables are shown in italic.
  • Exp.: $$f(x)=3a+x$ gives</li></ul><p style="text-align:center;">f(x)=3a+x$$


contour integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for the contour integral symbol:

$$\bigoint_{0}^{\infty}$   gives   </p><p align="center">\bigoint_{0}^{\infty} </p><p align="center">and</p><p align="center">$$\oint_{0}^{\infty}$   gives 

\oint_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigoint_{\small0}^{\small\infty}$   gives   </p><p></p><p align="center">\LARGE\bigoint_{\small0}^{\small\infty} </p><p align="left"></p><p align="center">and</p><p align="center">$$\large\oint_{\small0}^{\small\infty}$   gives 

\large\oint_{\small0}^{\small\infty}


coproduct

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Note: mimeTeX seems currently only to support the \bigcoprod command.
  • Syntax for coproduct symbol:

$$\bigcoprod_{i=k}^{n}$   gives   </p><p align="center">\bigcoprod_{i=k}^{n} </p><ul><li><div align="left">Use font size commands for a nicer picture:</div></li></ul><p align="left"></p><p align="center">$$\LARGE\bigcoprod_{\small{i=k}}^{\small~n}$   gives  

\LARGE\bigcoprod_{\small{i=k}}^{\small~n}


D

delimiters (overview)

Delimiters (parentheses, braces, brackets. ...)
CommandExampleResult

\left(... \right)

$$2\left(a+b\right)$</td><td valign="top" width="33%">2~\left(a+b\right)$$
\left[... \right]$$\left[a^2+b^2~\right]$</td><td valign="top" width="33%">\left[a^2+b^2~\right]$$
\left{... \right}$$\left{x^2, x^3, x^4,... \right}$</td><td valign="top" width="33%">\left{x^2, x^3, x^4,... \right}$$
\left\langle... \right\rangle$$\left\langle a,b~\right\rangle$</td><td valign="top" width="33%">\left\langle a,b~\right\rangle$$
\left| ... \right| $$\det\left|\array{a&b\\c&d}\right| $</td><td valign="top" width="33%">\det\left|\array{a&b\\c&d}\right| $$
\left\| ... \right\| $$\left\|f~\right\|$</td><td valign="top" width="33%">\left\|f~\right\|$$

\left{ ... \right.

(note the dot!)

$$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$</p><p>(\rm switches to roman style)</p></td><td valign="top" width="33%"><p>f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$

\left.{ ... \right\}

(note the dot!)

$$\left.{{\rm~term1\atop\rm~term2}\right}=y$</td><td valign="top" width="33%">\left.{{\rm~term1\atop \rm~term2}\right}=y$$

Note: The delimiters are automatically sizes.



Page: (Previous)   1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL