Math Notation Help

This glossary will help you build complex mathematical equations using the Tex markup language. This will involve using @@ or $$ before and after the expression to display the desired results.
All categories

Page:  1  2  3  4  5  6  7  8  9  10  (Next)


escaping the TeX filter

  • With two triple $'s embracing an expression you can make the filter to escape and the code itself is shown (with two embracing double $'s).
  • Ex.: $$$a^2$$$ produces $$a^2$$$, i.e. prevents the filter to render it as a formula gif.

mathematics expression

  • A valid expression inside the $'s is rendered as mathematics in an inserted gif image.
  • Ex.: $$x=y^2$ creates  </li></ul><p align="center">x=y^2$$

triggering the TeX filter

  • Two double $'s embracing a valid math expression trigger the filter to generate and insert the formula gif.
  • Ex.:  $$a^2$ produces a^2$$


arithmetic operations

  • Type arithmetic operations and "=" as usual.
  • Exp.: $$f(x)=x-2b+(3a/c)$ gives</li></ul><p style="text-align:center;">f(x)=x-2b+(3a/c)$$

    • See also keyword "fraction" for extended capabilities.


  • Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
  • Following this convention, variables are shown in italic.
  • Exp.: $$f(x)=3a+x$ gives</li></ul><p style="text-align:center;">f(x)=3a+x$$


  • Syntax: \frac{numerator}{denominator}
  • Use font sizing commands for specific sizing if you don't want the predefined one to be taken.
  • Ex. (with predefined sizing): $$f(x,y)=\frac{2a}{x+y}$ gives </li></ul><p style="text-align:center;">f(x,y)=\frac{2a}{x+y}$$

    • Ex. (with specific sizing): $$f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$ gives </li></ul><p style="text-align:center;">f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$$

      • You may nest fractions as much as you want.
      • Ex. (nested fractions): $$\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$ gives </li></ul><p style="text-align:center;">\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$$

multiplication (with cdot)

$$a\cdot~b$ gives a\cdot~b$$


  • Syntax: \sqrt[n]{arg} or simply  \sqrt{arg} for \sqrt[2]{arg}
  • Ex.: $$\sqrt[3]{8}$ gives</li></ul><p align="center">\sqrt[3]{8}$$

    • Ex.: $$\sqrt{-1}$ gives</li></ul><p align="center">\sqrt{-1}$$

      • Nesting of roots (and combining with fractions, ...etc.) are possible.
      • Ex.: $$\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$ gives</li></ul><p align="center">\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$$

        • Ex.: $$\sqrt[3]{-q+\sqrt{q^2+p^3}}$ gives</li></ul><p align="center">\sqrt[3]{-q+\sqrt{q^2+p^3}}$$

square root

  • $$\sqrt{a}$ or $$\sqrt~a$ gives \sqrt~a
  • Use braces for terms with more than one character: $$\sqrt{x+y}$ gives</li></ul><p align="center">\sqrt{x+y}$$


  • The command character "_" triggers subscription of the following expression(s).
  • For more than one subscripted character put them in braces {...}.
  • Use font sizing commands for appropriate sizing.
  • Ex.:$$x_1$ gives </li></ul><p style="text-align:center;">x_1$$

    • Ex.:$$a_{m+2n}$ gives </li></ul><p style="text-align:center;">a_{m+2n}$$

      • Ex. (with specific sizing):  $$x_{\small1}=a_{\small{m+2n}}$ gives</li></ul><p style="text-align:center;">x_{\small1}=a_{\small{m+2n}}$$

        • Combine subscripting with superscripting (command character "^").
          Syntax: Expr_{subExpr}^{supExpr}.
        • Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$ gives</li></ul><p style="text-align:center;">A_{\small{i,j,k}}^{\small{-n+2}}$$

Page:  1  2  3  4  5  6  7  8  9  10  (Next)