Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

C

cdot (multiplication)

$$a\cdot~b$$ gives a\cdot~b

chi (lower case greek letter)

$$\chi$$ gives \chi

constants

  • Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
  • Following this convention, variables are shown in italic.
  • Exp.: $$f(x)=3a+x$$ gives

f(x)=3a+x


contour integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for the contour integral symbol:

$$\bigoint_{0}^{\infty}$$   gives  

\bigoint_{0}^{\infty}

and

$$\oint_{0}^{\infty}$$   gives 

\oint_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigoint_{\small0}^{\small\infty}$$   gives  

\LARGE\bigoint_{\small0}^{\small\infty}

and

$$\large\oint_{\small0}^{\small\infty}$$   gives 

\large\oint_{\small0}^{\small\infty}


coproduct

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{<em>lowerexpression</em>}^{<em>upperexpression</em>}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Note: mimeTeX seems currently only to support the \bigcoprod command.
  • Syntax for coproduct symbol:

$$\bigcoprod_{i=k}^{n}$$   gives  

\bigcoprod_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigcoprod_{\small{i=k}}^{\small~n}$$   gives  

\LARGE\bigcoprod_{\small{i=k}}^{\small~n}