Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

D

delimiters (overview)

Delimiters (parentheses, braces, brackets. ...)
CommandExampleResult

\left(... \right)

$$2\left(a+b\right)$$2~\left(a+b\right)
\left[... \right]$$\left[a^2+b^2~\right]$$\left[a^2+b^2~\right]
\left{... \right}$$\left{x^2, x^3, x^4,... \right}$$\left{x^2, x^3, x^4,... \right}
\left\langle... \right\rangle$$\left\langle a,b~\right\rangle$$\left\langle a,b~\right\rangle
\left| ... \right| $$\det\left|\array{a&b\\c&d}\right| $$\det\left|\array{a&b\\c&d}\right|
\left\| ... \right\| $$\left\|f~\right\|$$\left\|f~\right\|

\left{ ... \right<strong>.</strong></p><p><font color="#ff0000"><em>(note the dot!)</em></font></p></td><td valign="top" width="33%"><p>$$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$

(\rm switches to roman style)

f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.

\left.{ ... \right\}

(note the dot!)

$$\left.{{\rm~term1\atop\rm~term2}\right}=y$$\left.{{\rm~term1\atop \rm~term2}\right}=y

Note: The delimiters are automatically sizes.


delta

$$\delta$$ is \delta

Delta (upper case greek letter)

$$\Delta$$ gives \Delta

delta (lower case greek letter)

$$\delta$$ gives \delta

div (division)

$$x\div~y$$ gives x\div~y

division

@@1/2@@   is \frac{1}{2}

double vertical line (norm symbol)

  • Syntax: \left\|...\right\|
  • Exp.: $$\left\|af\right\| = \left|a\right|\left\|f\right\|$$ gives

\left\|af\right\| = \left|a\right|\left\|f\right\|