Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

M

math spaces

List of predefined spaces:

Math Spaces
CommandExampleResult
\, (smallest predefined)$$a\,b$$a\,b
\:  (second smallest predefined)$$a\:b$$a\:b
\;  (third smallest predefined)$$a\;b$$a\;b
\/  (avoiding ligatures)$$V\/A$$ instead of $$VA$$V\/A instead of VA
\quad  (space of current character set size)$$a\quad~b$$a\quad~b
\qquad  (double space of current character set size)$$a\qquad~b$$a\qquad~b
\_ (where _ is blank!)

$$a\ b$$

(whereas $$a\b$$ is not a valid filter expression since the blank space is missing; it is recommended to use the tilde ~ instead of the simple whitespace)

a\ b

\hspace{n} ,where n positive integer (= n Pixels)

$$a~\hspace{30}~b$$

$$a~\hspace{15}~b$$

$$a~\hspace{2}~b$$

$$a~\hspace{1}~b$$

a~\hspace{30}~b

a~\hspace{15}~b

a~\hspace{2}~b

a~\hspace{1}~b

\unitlength{m}\hspace{n}, changes the default unit length (m=1px) to be applied

$$a~\hspace{2}~b\unitlength{10}~\hspace{2}~c$$

(second space is 10x2=20px)

a~\hspace{2}~b\unitlength{10}~\hspace{2}~c

Note: Simple blank spaces and tildes (~) are ignored by the TeX filter and don't produce any space. You must use one of the defined math spaces to get a visible (extra) space.


mathematics expression

  • A valid expression inside the $'s is rendered as mathematics in an inserted gif image.
  • Ex.: $$x=y^2$$ creates 

x=y^2


matrix

  • An (m,n)-matrix is considered as an array of m*n elements, where the elements of a column are separated by "&" and the rows by "\\".
  • Syntax for an (m,n)-matrix:
    \begin{array}{<em>colformat}a11&...&a1n\\a21&...&a2n\\... \\am1&...&amn \end{array}

    where
    colformat defines the format of each of the n columns: l for left, r for right and c for center (hence {ccccc} defines for a (m,5)-matrix in which all columns are centered)

  • Ex.: $$\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)$$ gives

\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)

Note in the example above that "lcr" has the effect that column 1 is left aligned, column 2 centered and colums 3 right aligned.


minus

$$-$$ is -

minus plus

$$\mp~a$$ gives \mp~a

mu (lower case greek letter)

$$\mu$$ gives \mu

multiplication

$$x*y=z$$ is x*y=z

multiplication (with cdot)

$$a\cdot~b$$ gives a\cdot~b